Exercise 28

For each of the following functions (i) give a definition like those in (2), (ii) sketch the graph, and (iii) find a formula similar to Equation 3.
(a) csch^{-1}
(b) sech^{-1}
(c) coth^{-1}

Solution

Part (a)

The hyperbolic cosecant function is one-to-one because it satisfies the horizontal line test (see the graph in Exercise 22), so an inverse function exists.

$$
y=\operatorname{csch}^{-1} x \quad \Leftrightarrow \quad \operatorname{csch} y=x
$$

Express this equation on the right in terms of exponential functions.

$$
\begin{aligned}
x=\operatorname{csch} y=\frac{1}{\sinh y}=\frac{1}{\frac{e^{y}-e^{-y}}{2}} & =\frac{2}{e^{y}-e^{-y}} \\
& =\frac{2}{e^{y}-e^{-y}} \times \frac{e^{y}}{e^{y}} \\
& =\frac{2 e^{y}}{e^{2 y}-1}
\end{aligned}
$$

Multiply both sides by $e^{2 y}-1$.

$$
\begin{gathered}
x\left(e^{2 y}-1\right)=2 e^{y} \\
x e^{2 y}-x=2 e^{y} \\
x e^{2 y}-2 e^{y}-x=0
\end{gathered}
$$

Use the quadratic formula to solve for e^{y}.

$$
\begin{aligned}
e^{y} & =\frac{2 \pm \sqrt{4-4(x)(-x)}}{2 x} \\
& =\frac{2 \pm \sqrt{4+4 x^{2}}}{2 x} \\
& =\frac{2 \pm 2 \sqrt{1+x^{2}}}{2 x} \\
& =\frac{1 \pm \sqrt{1+x^{2}}}{x}
\end{aligned}
$$

The exponential function is always positive; choose the minus sign if x is negative, and choose the plus sign if x is positive.

$$
\begin{aligned}
e^{y} & = \begin{cases}\frac{1-\sqrt{1+x^{2}}}{x} & \text { if } x<0 \\
\frac{1+\sqrt{1+x^{2}}}{x} & \text { if } x>0\end{cases} \\
& = \begin{cases}\frac{\sqrt{1+x^{2}}-1}{-x} & \text { if } x<0 \\
\frac{\sqrt{1+x^{2}}+1}{x} & \text { if } x>0\end{cases} \\
& =\frac{\sqrt{1+x^{2}}+\operatorname{sgn} x}{|x|}
\end{aligned}
$$

Take the natural logarithm of both sides to solve for y.

$$
\begin{aligned}
\ln e^{y} & =\ln \left(\frac{\sqrt{1+x^{2}}+\operatorname{sgn} x}{|x|}\right) \\
y & =\ln \left(\frac{\sqrt{1+x^{2}}+\operatorname{sgn} x}{|x|}\right)
\end{aligned}
$$

Therefore,

$$
\operatorname{csch}^{-1} x=\ln \left(\frac{\sqrt{1+x^{2}}+\operatorname{sgn} x}{|x|}\right) .
$$

A graph of this function is shown below.

Part (b)

The hyperbolic secant function is not one-to-one because it fails the horizontal line test (see the graph in Exercise 22), so an inverse function exists only if the restriction to nonnegative arguments is taken.

$$
y=\operatorname{sech}^{-1} x \quad \Leftrightarrow \quad \operatorname{sech} y=x, \quad y \geq 0
$$

Express this equation on the right in terms of exponential functions.

$$
\begin{aligned}
x=\operatorname{sech} y=\frac{1}{\cosh y}=\frac{1}{\frac{e^{y}+e^{-y}}{2}} & =\frac{2}{e^{y}+e^{-y}} \\
& =\frac{2}{e^{y}+e^{-y}} \times \frac{e^{y}}{e^{y}} \\
& =\frac{2 e^{y}}{e^{2 y}+1}
\end{aligned}
$$

Multiply both sides by $e^{2 y}+1$.

$$
\begin{gathered}
x\left(e^{2 y}+1\right)=2 e^{y} \\
x e^{2 y}+x=2 e^{y} \\
x e^{2 y}-2 e^{y}+x=0
\end{gathered}
$$

Use the quadratic formula to solve for e^{y}.

$$
\begin{aligned}
e^{y} & =\frac{2 \pm \sqrt{4-4(x)(x)}}{2 x} \\
& =\frac{2 \pm \sqrt{4-4 x^{2}}}{2 x} \\
& =\frac{2 \pm 2 \sqrt{1-x^{2}}}{2 x} \\
& =\frac{1 \pm \sqrt{1-x^{2}}}{x}
\end{aligned}
$$

Since $y \geq 0, e^{y} \geq 1$, which means the numerator has to be greater than or equal to the denominator. Choose the plus sign to make it so.

$$
e^{y}=\frac{1+\sqrt{1-x^{2}}}{x}
$$

Take the natural logarithm of both sides.

$$
\begin{aligned}
\ln e^{y} & =\ln \left(\frac{1+\sqrt{1-x^{2}}}{x}\right) \\
y & =\ln \left(\frac{1+\sqrt{1-x^{2}}}{x}\right)
\end{aligned}
$$

Therefore,

$$
\operatorname{sech}^{-1} x=\ln \left(\frac{1+\sqrt{1-x^{2}}}{x}\right)
$$

A graph of this function is shown below.

Part (c)

The hyperbolic cotangent function is one-to-one because it satisfies the horizontal line test (see the graph in Exercise 22), so an inverse function exists.

$$
y=\operatorname{coth}^{-1} x \quad \Leftrightarrow \quad \operatorname{coth} y=x
$$

Express this equation on the right in terms of exponential functions.

$$
\begin{aligned}
x=\operatorname{coth} y=\frac{\cosh y}{\sinh y}=\frac{\frac{e^{y}+e^{-y}}{e^{y}-e^{-y}}}{2} & =\frac{e^{y}+e^{-y}}{e^{y}-e^{-y}} \\
& =\frac{e^{y}+e^{-y}}{e^{y}-e^{-y}} \times \frac{e^{y}}{e^{y}} \\
& =\frac{e^{2 y}+1}{e^{2 y}-1}
\end{aligned}
$$

Multiply both sides by $e^{2 y}-1$.

$$
\begin{gathered}
x\left(e^{2 y}-1\right)=e^{2 y}+1 \\
x e^{2 y}-x=e^{2 y}+1 \\
x e^{2 y}-e^{2 y}=x+1
\end{gathered}
$$

Factor the exponential function and then solve for $e^{2 y}$.

$$
\begin{aligned}
(x-1) e^{2 y} & =x+1 \\
e^{2 y} & =\frac{x+1}{x-1}
\end{aligned}
$$

Take the natural logarithm of both sides to solve for y.

$$
\begin{aligned}
\ln e^{2 y} & =\ln \left(\frac{x+1}{x-1}\right) \\
2 y \ln e & =\ln \left(\frac{x+1}{x-1}\right) \\
y & =\frac{1}{2} \ln \left(\frac{x+1}{x-1}\right)
\end{aligned}
$$

Therefore,

$$
\operatorname{coth}^{-1} x=\frac{1}{2} \ln \left(\frac{x+1}{x-1}\right)
$$

